Solving Indefinite Kernel Support Vector Machine with Difference of Convex Functions Programming
نویسندگان
چکیده
Indefinite kernel support vector machine (IKSVM) has recently attracted increasing attentions in machine learning. Different from traditional SVMs, IKSVM essentially is a non-convex optimization problem. Some algorithms directly change the spectrum of the indefinite kernel matrix at the cost of losing some valuable information involved in the kernels so as to transform the non-convex problem into a convex one. Other algorithms aim to solve the dual form of IKSVM, but suffer from the dual gap between the primal and dual problems in the case of indefinite kernels. In this paper, we directly focus on the non-convex primal form of IKSVM and propose a novel algorithm termed as IKSVM-DC. According to the characteristics of the spectrum for the indefinite kernel matrix, IKSVM-DC decomposes the objective function into the subtraction of two convex functions and thus reformulates the primal problem as a difference of convex functions (DC) programming which can be optimized by the DC algorithm (DCA). In order to accelerate convergence rate, IKSVMDC further combines the classical DCA with a line search step along the descent direction at each iteration. A theoretical analysis is then presented to validate that IKSVM-DC can converge to a local minimum. Systematical experiments on real-world datasets demonstrate the superiority of IKSVMDC compared to state-of-the-art IKSVM related algorithms.
منابع مشابه
Multiple Indefinite Kernel Learning for Feature Selection
Multiple kernel learning for feature selection (MKLFS) utilizes kernels to explore complex properties of features and performs better in embedded methods. However, the kernels in MKL-FS are generally limited to be positive definite. In fact, indefinite kernels often emerge in actual applications and can achieve better empirical performance. But due to the non-convexity of indefinite kernels, ex...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملSupport vector machines with indefinite kernels
Training support vector machines (SVM) with indefinite kernels has recently attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous work on training SVM with indefinite ke...
متن کاملLearning with Non-Positive Semidefinite Kernels
During the last years, kernel based methods proved to be very successful for many real-world learning problems. One of the main reasons for this success is the efficiency on large data sets which is a result of the fact that kernel methods like Support Vector Machines (SVM) are based on a convex optimization problem. Solving a new learning problem can now often be reduced to the choice of an ap...
متن کاملA Reformulation of Support Vector Machines for General Confidence Functions
We present a generalized view of support vector machines that does not rely on a Euclidean geometric interpretation nor even positive semidefinite kernels. We base our development instead on the confidence matrix—the matrix normally determined by the direct (Hadamard) product of the kernel matrix with the label outer-product matrix. It turns out that alternative forms of confidence matrices are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017